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Two fractions of a major ganglioside from the kidney of the pacific salmon, Oncorhynchus
keta, were eluted from a DEAE-Sephadex column in the monosialosyl fraction. The faster
moving ganglioside (XI) on TLC was separated from the slower moving one (X2) by HPLC
using a silica beads column. By methylation analysis, chemical and enzymatic degradation,
reaction with monoclonal antibodies, LSIMS, and 'H-NMR spectroscopy, XI was deter-
mined to be a monosialosyl ganglioside belonging to the ganglio-series with a unique
FuCffl-3GalNAc linkage at the nonreducing terminal:

Fucal-3GalNAc^l-3Galy91-3GalNAcy91-4[NeuAca2-3]Galy91-4Glcy91-lCer

Analysis of the lipophilic moiety indicated predominance of 24:1 fatty acid in combination
with sphingenine. X2 was found to have a glycon structure identical to XI. The ceramide of
X2 consisted predominantly of saturated fatty acids (18:0 and 16:0). The tissue concentra-
tions of XI and X2 in kidney were 3.7 and 2.8 nmol/g, respectively.

Key words: fucoganglioside, 'H-NMR spectroscopy, LSIMS, kidney, Oncorhynchus keta,
salmon.

Glycolipids are the components of the animal plasma
membrane (3, 4), and those in mammalian kidney have
been studied with respect to renal functions (5-8). Quanti-
tative estimation of renal sulfoglycolipids in various
mammals indicated that the sulfoglycolipid content is a
function of metabolic activities (9, 10) as well as the
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environmental osmolality (11). Recently, using the system
of cultured renal tubular cells, the crucial role of the
sulfoglycolipids in adaptation to a change in osmolality was
clearly demonstrated (12, 13). The osmolality of eury-
haline fish is regulated mainly by the kidney and gills (14).
Of these tissues, glycolipid has been studied only in the gills
of eel (15), although the compositions of the acidic glyco-
lipid of other fish tissues reported include brain (16-19),
milt (20), liver (21, 22), and roe (23, 24). Salmon hatched
in fresh water undergo parr-smolt transformation on
moving into seawater and perform anadromous reproduc-
tion. Therefore, we were prompted to study the composi-
tion of acidic glycolipids in the salmon kidney. The present
paper describes characterization of a novel fucoganglioside
of the ganglio-series containing a unique Fucal-3GalNAc
structure as the major sialoglycolipid component of the
kidney of the Pacific salmon.

EXPERIMENTAL PROCEDURES

Materials—Kidneys were freshly prepared from salmon
captured off the Sanriku Coast of Japan in December and
stored at — 40=C before extraction. Ganglioside GMla (1)
from bovine brain was obtained from Funakoshi Pharma-
ceutical, Tokyo, and gangliotetraosylceramide (Gg4Cer)
was prepared from GMla by mild acid hydrolysis (16).
Other reference glycolipids and partially O-methylated
alditols were prepared in this laboratory (25). Rabbit anti-
Gg4Cer antibody was purchased from Seikagaku Kogyo,
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Tokyo. The affinity-purified peroxidase-goat anti-rabbit
IgG (c-chain specific) was purchased from Zymed Labora-
tories, San Francisco (26). yff-Galactosidase [EC 3.2.1.23,
grade VII] and /?-iV-acetylhexosaminidase [EC 3.2.1.30]
from jack bean and neuraminidase [EC 3.2.1.18, type V]
from Clostridium perfringens were the products of Sigma,
St. Louis, USA. Reagents for derivatization and NMR
spectroscopy were previously described (27).

Thin Layer Chromatography—TLC was performed on
Silicagel 60 HPTLC plates, Art. 5641 (E. Merck, Darm-
stadt, FRG), with the following solvent systems: I, chloro-
form/methanol/0.2% CaCl2 (55:45:10, v/v); II, chloro-
form/methanol/water (60:35:8, v/v); and III, chloroform/
methanol/3.5 M NH<OH (55:45:10, v/v). Glycolipids,
gangliosides, and sulfoglycolipids were visualized with
orcinol, resorcinol (28), and Azure A reagent (27), respec-
tively. TLC densitometric analysis of resorcinol-stained
ganglioside was performed at 580 nm with a Shimadzu
Flying-Spot Scanner CS-9000. TLC-immunostaining was
performed as described previously (26).

Isolation of the Major Monosialosyl Gangliosides—The
extraction and purification procedures for acidic glycolipid
were similar to the methods of Bligh and Dyer (29) and
Momoi et al. (30), respectively. Briefly, 2 kg of kidneys
was extracted in two steps with 6 liters of chloroform/
methanol (1:2, v/v) and 3.8 liters of chloroform/methanol/
water (1:2:0.8, v/v). The combined extracts were par-
titioned by addition of 1.5 liters each of chloroform and
water, and the resulting upper phase was dialyzed and
lyophilized. The lower phase lipid was treated with 0.1 M
NaOH in methanol (200 ml) at 37°C for 1 h, then neutral-
ized with 1 M acetic acid. The mixture was concentrated,
dialyzed and lyophilized.

The upper and the lower phase lipids were combined,
redissolved in chloroform/methanol/water (30:60:8, v/v),
and applied to a column of DEAE-Sephadex A-25 (3x50
cm) (Amersham Pharmacia Biotech, Tokyo) prepared by
equilibration with 2 M sodium acetate in methanol. After
washing the column with 4.0 liters of the same solvent to
remove neutral lipids, acidic glycolipids were separated
with a linear gradient (2.2 liters) of chloroform/methanol/
water (30:60:8, v/v) to chloroform/methanol/0.5 M
ammonium acetate (30:60:8, v/v). Fractions (15 ml/tube)
of eluates were monitored by HPTLC (Fig. 1).

Two major glycolipids in the monosialosyl ganglioside
fraction, tentatively designated as XI and X2 (tube num-
bers 55-80), were eluted earlier than two monosialosyl
gangliosides tentatively assigned to GM1 (tube numbers
94-106) and GM3 (102-114). These bands were identified
as gangliosides, because they reacted positively with
orcinol and resorcinol but not with Azure A reagent. They
were further purified by HPLC with a Shimadzu LC 4A
apparatus using a column (1x30 cm) of porous silica gel
(Iatrobeads 6RS-8005, 5//m, Iatron, Tokyo) with chloro-
form/methanol/ water (60:40:2, v/v) at a flow rate of 1 ml/
min. The concentration of XI and X2 determined by
TLC-densitometry using GMla (NeuAc) as the standard
was 3.7 and 2.8 nmol sialic acid/g kidney, respectively.

Chemical Analysis—The trimethylsilyl methylglyco-
sides and methyl esters of fatty acids were prepared as
described (7). GLC of carbohydrates and fatty acid methyl
esters was performed on a capillary columns (25 m) of 0.2
fim thick OV-101 and CBP-1 (Shimadzu), respectively, in
a Shimadzu GC-7A Gas Chromatograph. iV-Acetyl-O-tri-
methylsilyl derivatives of sphingoid bases (20 nmol) were
prepared by the method of Sweeley and Moscatelli (31)
after methanolysis (32) and analyzed isothermally at 260°C
using the CBP-1 capillary column. For methylation study,
a portion (20-50 jxg) of glycolipid was permethylated (33),
acetolyzed, reduced with NaB[2H]4 (25), and acetylated
according to the published procedures (34). The acetates of
partially methylated alditols were analyzed by GLC-elec-
tron impact mass spectrometry using a Shimadzu Auto
GC-MS 6020 apparatus (25). GLC separation was achieved
using columns of either 3% SP-2340 or 3% OV-17. Peaks
were identified by retention times and characteristic frag-
ment ions (35). GLC for quantitative analysis of alditol
acetates was carried out on a CBP-1 capillary column.

Limited Hydrolysis of Glycolipid—Glycolipid XI (500
Mg) was treated with 1% acetic acid at 100°C for 1 h, and the
reaction mixture was lyophilized. The neutral fraction,
obtained by passing through a DEAE-Sephadex column
(5x 10 mm), was applied on a HPLC column (Iatrobeads
6RS-8005, 1x30cm). Three major products (designated
PI, P2, and P3) were separated by elution with chloroform/
methanol/water (60:40:1, v/v). For the enzymatic hydro-
lysis with /?-galactosidase, glycolipids were incubated in 50
mM sodium citrate buffer (pH 4.0) containing sodium

A3

A4 -
A5
A6

X2

ST 50
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Fig. 1. Elution of acidic gly-
colipids of salmon kidneys
from a DEAE-Sephadex col-
umn. Elution of acidic glyco-
lipids from the DEAE-Sephadex
column was monitored by
HPTLC developed in the neutral
solvent system I. Glycolipids
were located by orcinol reagent.
Lane ST, the mixture of rat
brain acidic glycolipids for refer-
ence (Al, galactosyl sulfatide;
A2, GM3; A3, GM1; A4, GDla;
A5, GDlb; A6, GTlb + GQlb).
Details are described in the text.
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taurocholate (1 mg/ml) at 37*C for 16 h. For /3-iV-acetyl-
hexosaminidase, the same buffer of pH 5.0 was used. The
reaction mixture was adjusted to chloroform/methanol/
water (30:60:8, v/v), and sialic acid, taurocholate, and the
intact glycolipid were removed by using a DEAE-Sephadex
column.

Liquid Secondary Ion Mass Spectrometry (LSIMS)—
Negative-ion LSIMS was performed on a Concept IH mass
spectrometer (Sbimadzu/Kratos, Kyoto) fitted with a
cesium ion gun (36, 37). About 0.5 nmol of underivatized
glycolipid in 1 fi\ of chloroform/methanol (1:2, v/v) was
mixed with 1 ix\ of triethanolamine as the matrix. Spectra
were recorded at an accelerating voltage of 8 kV, with a
scan rate of 5 s/decade, and at a resolution of 1000 to 2000.

'H NMR Spectroscopy—After successive dialysis
against phosphate-buffered saline (Ca2+ and Mg*+ free), pH
7.4, and water, glycolipid XI (11 mg) and X2 (2 mg) were
lyophilized, treated with CH3O[2H], and dried thoroughly
over P2O6 in vacua. 'H NMR spectra were recorded on a
GX-400 spectrometer of Japan Electron Optical Labora-
tory (JEOL, Tokyo) at 400 MHz (38) and 60'C. The protons
of the saccharide ring and ceramides were assigned by
combined use of spin-decoupling and multiple-relayed
chemical-shift-correlated spectroscopy (COSY). Chemical
shifts were indicated by ppm from the signal of Me4 Si as an
internal standard.

RESULTS

Chemical Analysis of XI and X2—0n HPTLC, ganglio-
sides XI and X2 migrated between GM1 and GDI a in the
neutral solvent system I (Fig. 2).

However, in the basic solvent system III, both ganglio-
sides migrated between GDla and GDlb. GLC of trimeth-
ylsilyl methylglycosides indicated that the component
monosaccharides of both XI and X2 were Glc, Gal, GalNAc,
Fuc, and sialic acid in essentially similar proportions of 1.0:
2.0:2.1:1.0:0.7. The sialic acid liberated by hydrolysis with
0.05 N HCl/methanol for 1 h (39) was identified as NeuAc
by GLC using GMla (NeuAc) as the standard. The partially
methylated alditol acetates of XI and X2 were separated
with a SP-2340 column and identified by mass chromatog-
raphy (25) to be 2,3,4-tri-O-methyl-fucitol, 2,4,6-tri-O-
methylgalactitol, 2,3,6-tri-O-methylglucitol, and 2,6-di -
O-methylgalactitol. By using an OV-17 column, 4,6-di-O-
methyl-iV-acetylgalactosaminitol was also detected. The
ratios of the peak areas of 2,3,4-tri-O-methyl-fucitol,
2,4,6-tri- O-methylgalactitol, 2,3,6-tri- O-methylglucitol,
2,6-di- O-methylgalactitol, and 4,6-di- O-methyl-N-acetyl-
galactosaminitol in XI and X2 were essentially similar,
approximately 0.4:1.0:1.0:1.2:1.8 (Table I).

Taking into consideration the relative volatility of per-
methylated fucitol, the molar ratios of partially methylated
alditol acetates are in reasonable agreement with the
monosaccharide composition, suggesting that the sacchar-
ide linkages of XI and X2 are identical. The major fatty
acids were 24:1 (80.0%) for XI and 18:0 (31.1%) and 16:0
(32.4%) for X2, indicating that the difference in their
chromatographic behavior might be ascribed to the fatty
acid composition. The preponderant sphingoid of both XI
and X2 was 4-sphingenine (dl8: 1) (Table II).

Identification of Limited Hydrolysis Products of XI by
Mild Acid and Glycosidases—Ganglioside XI, being unsus-
ceptible to sialidase from Clostridium perfringens, was
hydrolyzed with mild acid to give three major products
(designated PI, P2, and P3 on TLC upward from the lowest
band in lane 3 of Fig. 3).

PI, P2, and P3 were subsequently purified by HPLC to
single bands (Fig. 3, lanes 4, 5, and 6). Glycolipid P3 (lane
6) was converted by /S-galactosidase into a product shown in
lane 7. The product of lane 7 was sequentially converted
into a dihexosylceramide (lane 8) by /3-iV-acetylhexos-
aminidase, and a monohexosylceramide (lane 9) by /?-ga-
lactosidase. In methylation study, P3 yielded acetates of
2,3,4,6-tetra- O-methylgalactitol, 2,3,6-tri- O-methylga-
lactitol, 2,3,6-tri-O-methylglucitol, and 4,6-di-O-methyl-
iV-acetylgalactosaminitol (Table I). The anomeric region of
the 'H-NMR spectrum of P3 contained a one-proton
doublet (4.603 ppm, J,,2 = 7.8 Hz), a two-proton doublet
(4.227 ppm ( = the internal), 3J,,2 = 7.8 Hz), and a one-pro-
ton doublet (4.165 ppm, c/,.2 = 7.8 Hz) (Table HI) assigned

Fig. 2. HPTLC of the major gangliosides purified from salmon
kidney. Plates were developed in the neutral solvent system I in
panel A, and in a basic solvent system III in panel B. Glycoiipids were
located by orcinol reagent. Lane 1, rat brain acidic glycoiipids (cf. Fig.
1); lane 2, XI; lane 3, X2.

TABLE I. Partially O-methylated alditol acetates from the intact ganglioside XI and the glycoiipids obtained by mild acid
hydrolysis. Values were determined by GLC on a CBP-1 capillary column. PI, P2, and P3 are hydrolysis products of XI. + , detected by
GC-MS on an OV-17 column.

XI
PI
P2
P3

X2

2,3,4-Fuc"
0.41
0.97

—
—

0.39

2,3,4,6-Galb

—
—
—

0.59
-

2,4,6-Galc

0.95
0.98
1.10

—
1.02

2,3,6-GaT1

_
1.31
0.74
0.78

-

2,3,6-Glc°
1.00
1.00
1.00
1.00
1.00

2,6-Gal'
1.17

—
—
-

1.22

3,4,6-GalNAc*
_
—

0.62
—
-

4,6-GalNAc"
1.80
+

0.42
+

1.74
•2,3,4-tri-O-methyl-fucitol, "2,3,4,6-tetra-O-methylgalactitol, c2,4,6-tri-O-methylgalactitol, "2,3,6-tri-O-methylgalactitol, ^ . e - t
methylglucitol, '2,6-di-O-methylgalactitol, '3,4,6-tri-O-methyl-N-acetylgalactosaminitol, "4,6-di-O-methyl-iV-acetylgalactosaminitol.
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to a /?-GalNAc, two y3-Gal, and one /3-Glc linked to cer-
amide, respectively. These resonances were similar to
those of Gg4Cer described previously (33). Glycolipid P3
was strongly stained with anti-Gg4Cer anti-body (indicated
in "EXPERIMENTAL PROCEDURES") on TLC (data not
shown). These results suggested that P3 was Gg4Cer.

The peak area ratio of 2,4,6- and 2,3,6-tri-O-methylga-
lactitol, 2,3,6-tri-O-methylglucitol, 3,4,6-tri-O-methyl-
and 4,6-di-O-methyl-iV-acetylgalactosaminitol of P2 was
approximately equimolar (Table I) suggesting that the
structure of P2 is GalNAc/3-3Gal/?-3GalNAc£-4Galy3-
4Glc/?-lCer. In the "H-NMR spectrum of P2, a two-proton
doublet corresponding to anomeric protons of two ft-
GalNAc was shown at 4.601 ppm in addition to the signals
of yS-Glc and >9-Gal (4.227 and 4.292 ppm) (Table III). The
signal (4.292 ppm) was assigned to the anomeric proton of
the penultimate Gal, because the glycosylation shift of
0.065 ppm by the terminal GalNAc is reasonable.

Methylation study of glycolipid PI showed 2,3,4-tri-O-
methyl-fucitol, 2,4,6- and 2,3,6-tri-O-methylgalactitol,
and 2,3,6-tri-O-methylglucitol in equimolar amounts
(Table I). The only amino sugar detected by GC-MS was
4,6-tri-O-methyl-iV-acetylgalactosarninitol. NMR spec-
trum of PI showed resonances of H-l, H-5, and H-6 of an
a-Fuc in addition to those found with P2 (Table III). From
these results, Pi was characterized as Fuc<z-3GalNAc/?-
3Gal/?-3GalNAc/?-4Gal/?-4Glc/?-Cer, a desialylation prod-

TABLE II. Fatty acids and long chain bases of gangliosides XI
and X2.

Fatty acid
14:0
16:0
18:0
18:1
24:1

Long chain base
dl8:l
dl8:0
tl8:0

XI
(weight %

2.8
4.6

10.6
2.0

80.0

79
13
8

X2
of total)

15.9
32.4
31.1

—
20.6

m9
6

uct of ganglioside XI. Together with the results of methyla-
tion analysis, this suggested the probable structure of XI to
be:

VI V IV III VII
Fuco--3GalNAc/ff-3Galy3-3GalNAcyff-4[NeuAca'2-3]

II I
Gal/?-4Glc/?-Cer

The Roman numerals correspond to the individual sacchar-
ide and were also used for the assignment of NMR spectrum
(see below).

Liquid Secondary Ion Mass Spectrometry (LSIMS)—To
confirm the structure above, negative LSIMS analysis of
XI was performed (Fig. 4).

—, not determined.

A2 , #

A4«

A6 —

T l T T T T T T I i i i
Fig. 3. Hydrolysis of XI by mild acid and exoglycosidases.
The HPTLC plate was developed with the neutral solvent system II.
Glycolipids were located by orcinol reagent. Lane 1, rat brain acidic
glycolipids (cf. Fig. 1); lane 2, purified XI ; lane 3, the products (*)
from XI by mild acid hydrolysis; lanes 4-6, the purified product (*)
P i , P2, and P3, respectively; lane 7, the product (*) from P3 after
incubation with /J-galactosidase; lane 8, the product (*) from the
glycolipids of lane 7 after incubation with /3-iV-acetylhexosamin-
idase; lane 9, the product (*) from the glycolipid of lane 8 after
incubation with /3-galactosidase. Lane 10, a neutral glycolipid
mixture from horse kidneys as reference: N l , monohexosylcer-
amides; N2, dihexosylceramides; N3, globotriaosylceramide.

TABLE III. 'H chemical shifts d (ppm from Me<Si) and vicinal coupling constants J (Hz) for intact ganglioside XI and X2 and the
hydrolysis products of XI. Spectra were acquired in Me2SO-d6/[2H]2O (98:2, v/v) at 60°C, and the chemical shifts were referenced to
internal Me4Si. The chemical shift value and 3J,,2 values are expressed in ppm and Hz, respectively. PI, P2, and P3 are products of limited
hydrolysis of XI.

P3(tf)
(J)

P2(tf)
(J)

Pl(tf)
(«/)

XI (3)
(J)

X2(<J)

W)
GM1 (6)

(J)

Fucal -

H-l

4.758
(2.9)
4.765
(3.9)
4.763
(4.0)

H-5

4.048

4.046

4.046

H-6

1.066
(6.8)
1.066
(6.4)
1.065
(6.5)

3GalNAc/31

H-l

4.601
(8.3)
4.679
(8.8)
4.657
(8.5)
4.657
(8.6)

N-Ac'

1.861"

1.809"

1.812

1.811

3Gal/3—

H-l
4.227
(7.8)
4.292
(6.8)
4.239
(6.3)
4.292
(6.8)
4.291
(6.8)
4.279
(7.8)

3GalNAc/S

H-l
4.603
(7.8)
4.601
(8.3)
4.599
(8.3)
4.871
(8.5)
4.871
(8.7)
4.882
(8.8)

N-Ac»
1.836

1.847"

1.841"

1.780

1.779

1.769

H-3eq

2.580

2.581

2.580

IN GUAC

H-3ax

1.634

1.632

1.630

N-Ac*

1.879

1.878

1.878

4Gal/3---
q
o

H-l
4.227
(7.8)
4.227
(7.8)
4.222
(6.8)
4.279
(7.8)
4.278
(7.8)
4.242
(7.1)

4Glc/3-Cer

H-l
4.165
(7.8)
4.165
(7.8)
4.166
(7.8)
4.158
(7.8)
4.158
(7.8)
4.158
(7.8)

" H chemical shift of N-acetylmethyl proton resonance. "These resonance assignments are tentative.
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M

Fig. 4. Negative-ion LSEMS of XI. Hex, hexose; HexNAc, N-acetylhexosamine; Cer, ceramide; dl8:l, 4-sphingenine; (M —H)~, the
deprotonated molecule. The peaks in the mass ranges higher than m/z 700 were amplified 10-fold.

An intense deprotonated molecule (M minus H)~ was
detected at m/z 1,975, corresponding to the ceramide
species of C24:l plus d l8 : l . Furthermore, characteristic
fragment ions [m/z 1,626 (-O-GM1), 1,464 (-0-GM2),
1,173 (-0-AM2), 1,261 (-0-GM3), 970 (-O-Hex2Cer), 808
(-O-HexCer), 364 (dHex-O-HexNAc-O-), 290 (NeuAc-),
and 646 (Cer, C24:l, dl8:l)] were obtained. The fragment
ion at m/z 1,261 suggested that NeuAc is linked to the
second hexose from the ceramide (40).

'H NMR Spectrum of XI— The 'H-NMR spectrum of XI
is shown in Fig. 5.

A typical H-2 triplet at the highest field of all saccharide
protons (3.027 ppm) supported the inference that the /5-Glc
is next to the ceramide. The connectivity between H-2/
H-l, H-2/H-3, H-5/H-6b, H-5/H-6a, and H-6a/H-6b of
Glc could be easily distinguished in the COSY spectrum.
The connectivity of resonances H-l to H-4 of Gal (II) and
H-l to H-5 of Gal (IV) allowed the assignment of the
sialylated Gal. Cross-peaks of H-2/H-1 (not shown), H-3/
H-2, and H-3/H-4 in GalNAc (IE and V) were also detected
in COSY spectrum. Based on the above results, the reso-
nances of six anomeric protons of the saccharide chain were
assigned as listed in Table HI.

The anomeric proton of yff-GalNAc (HI) at 4.871 ppm
(Ji,,=8.5 Hz) adjacent to the sialylated Gal was close to
GMla (4.882). In the product (PI), the anomeric proton of
GalNAc resonated at 4.599 ppm, 0.272 ppm higher field
than in XI (see below). This is in agreement with the
difference (0.293 ppm) on comparison of GMl and Gg4Cer
(41). The doublet of the H-6 methyl proton of Fuc was
observed at 1.066 ppm and was coupled with H-5 (4.046
ppm). Since the resonance of H-5 of Fuc is located in the
close upfield of the anomeric region, it was suggested that
Fuc is linked to the non-reducing terminal of the saccharide
chain (42) (pyranosides of the L-series mostly occur in the
'C4 conformation). The signals corresponding to double

42 <1 4.0 39 38 37 36 33 3 i 33 32 31 30

Fig. 5. "H-'H-COSY spectrum of XI. NMR spectra of XI was
obtained in 0.5 ml of Me,SO-<4 containing 2% [*H]iO at 60'C. The
spectrum was recorded with 2,048x512 data points and a spectral
width of 1,000 Hz (13, 14). Free induction decays were multiplied by
the Gaussian function (46). Arabic numbers refer to the ring protons
of sugar residues marked by Roman numerals in the structure drawn
in the text. Cross-signals of protons in the Glc residue are indicated in
the form 1-2/1 (for H-2 and H-l protons).

J. Biochem.

 at C
hanghua C

hristian H
ospital on O

ctober 1, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


A Novel Fucoganglioside from Salmon Kidney 967

doublets of H-3eq and a triplet of H-3ax of NeuAc were
found at 2.580 and 1.634 ppm, respectively. In addition to
the cross-peaks of H-3ax/H-3eq, H-3ax/H-4 (3.761 ppm),
and H-3eq/H-4 (not shown), cross-peaks of H-5 (3.410
ppm, J ^ = 10.5 Hz, J5,,= 10.5Hz)/H-4, H-6 (3.16 ppm,
obscured by HDO peak)/H-5 as well as H-7/H-8 could be
assigned. Three singlets of iV-acetyl methyl groups corre-
sponding to NeuAc (VII) and GalNAc (HI and V) were
observed between 1.8 and 1.9 ppm. The signal at 1.879
ppm may be assigned to iV-acetyl methyl of NeuAc by
comparison with the chemical shift (1.878 ppm) of iV-ace-
tyl methyl of NeuAc in GMla (Table III). The resonances at
1.812 and 1.780 ppm were assigned to the iV-acetyl
methyls of GalNAc (V) and (HI), respectively, since the
latter was very close to the N-acetyl methyl (1.769 ppm) of
GalNAc in GM1. The signals arising from the long chain
base were in agreement with the major component (dl8: 1).
The NMR spectrum of ganglioside X2 was identical to that
of XI except for the much smaller olefinic signals (5.3
ppm), in agreement with the low content of unsaturated
fatty acids (Table HI).

Table HI lists the chemical shifts and coupling constants
for the anomeric protons, H-5 and H-6 of fucose and H-3 of
NeuAc, and AT-acetyl methyl groups of monosaccharides in
XI, X2, the hydrolysis products of XI (PI, P2, and P3), and
GMla. Chemical shifts of the other ring protons of the
saccharide residues and the long chain base in XI are
summarized in Table IV. Gal (II): The connectivity from
n-1 and 11-2 = 3.17 [much higher than IV-2 = 3.46, 11-2 =
3.17 (unknown in PI) is 0.1 ppm higher than GMla of
Koerner (39) to II-4 ( = 3.96 ppm), with II-3 at 3.77 ppm
(^,3 = 8.7; </,.„ = 3.7) (and another Gal (IV-3) =3.49 ppm,
IV-4 = 3.82 ppm] indicated that this is the sialylated inter-
nal Gal. Two GalNAc (HI and V) could be followed up from
H-l to H-4 (internal or external can be inferred only by
comparison with P1-P3; HI-3 is at a lower field than V-3).

Based on NMR spectroscopy, methylation studies of the
saccharide chain, and the fatty acid analysis, X2 was
suggested to have a saccharide identical to XI, with the
ceramide containing predominantly more saturated fatty
acids.

TABLE IV. 'H chemical shift (ppm) of the saccharide residues
and the long chain base in ganglioside XI. The chemical shift is
expressed in ppm referenced to Me<Si. The Roman numerals corre-
spond to those in the structure described in the text. Sph, sphingosine
base; nd, not determined because of obscurity of the cross peak.

Glc (I)
Gal(H)
GalNAc (HI)
Gal (IV)
GalNAc (V)
Fuc (VI)1

NeuAc (VH)

Sph

(H-2)
3.05
3.17
3.95
3.46
3.91
3.44

(H-4)
3.75
(H-la)
3.47

(H-3)
3.35
3.77
3.55
3.49
3.52
3.60

(H-5)
3.40
(H-lb)
3.95

(H-4)
3.30
3.96
3.76
3.82
3.76
3.46

(H-5)
3.28"
3.48
3.65
3.40
3.66

(H-6) (H-7) (H-8)
3.18 3

(H-2)
3.78

.20 3.53
(H-3)
3.92

(H-6a)
3.63°

nd
nd
nd
nd

(H-9a)
3.35

(H-4)
5.35

(H-6b)
3.75"

nd
nd
nd
nd

(H-9b)
3.62

(H-5)
5.55

•The signals of H-5 and H-6 were described in Table in. "Confirmed
by spin decoupling of Glc H-6a. cConfirmed by spin decoupling of Glc
H-6b and H-4 of III and IV GalNAc simultaneously.

VI V TV HI VH
Fucff-3GalNAc/9-3Gal/3-3GalNAcy9-4[NeuAcff2-3]

H I
Gal/?-4Glc/3-Cer

DISCUSSION

One of the euryhaline fishes, Pacific salmon undergoes
parr-smolt transformation. The present study, prompted
by interest in the adaptation of salmon to osmolality, was
also motivated by an interest in the comparative biochem-
istry of glycolipids of the kidney. A striking feature of the
gangliosides in teleost fish kidney is the presence of a major
novel ganglioside in which a core structure of GMla
ganglioside is substituted with Fuc<*l-3GalNAc/?l-3R. A
unique ganglioside with oligosaccharide with a ganglio-
series core and a Forssmaan antigen determinant, GalNAc-
<*l-3GalNAc/?l-3R residue, has been identified in the liver
of English sole (21). In the other non-neuronal tissue of the
salmon, we identified GMlb ganglioside (authors' unpub-
lished observation). It appears that gangliosides of the
ganglioseries are commonly found in the non-neuronal
tissues of teleosts (29-32). Unique Fucal-SGalNAca- and
Fuc<zl-3GalNAc/?-linkages have been characterized in the
glycolipid of abalone (43) and English sole liver (30),
respectively. The disaccharide of Fuc<a'l-3GaINAc/3 has
already been reported in glycoproteins of salmon eggs (44,
45). The teleost brain is rich in polysialosyl gangliosides
(21-26). However, the majority of gangliosides in the
teleost kidney are monosialosyl. A higher degree of un-
saturation of the fatty acids was found in the gangliosides of
teleost kidney in comparison to mammalian kidney. As
already observed in the ganglioside of fish liver (29) and
brain (23), these fatty acids may help maintain membrane
fluidity at low temperatures in poikilothermic animals.
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